101 research outputs found

    Subcortical modulation in auditory processing and auditory hallucinations

    Get PDF
    Hearing perception in individuals with auditory hallucinations has not been well studied. Auditory hallucinations have previously been shown to involve primary auditory cortex activation. This activation suggests that auditory hallucinations activate the terminal of the auditory pathway as if auditory signals are submitted from the cochlea, and that a hallucinatory event is therefore perceived as hearing. The primary auditory cortex is stimulated by some unknown source that is outside of the auditory pathway. The current study aimed to assess the outcomes of stimulating the primary auditory cortex through the auditory pathway in individuals who have experienced auditory hallucinations. Sixteen patients with schizophrenia underwent functional magnetic resonance imaging (fMRI) sessions, as well as hallucination assessments. During the fMRI session, auditory stimuli were presented in one-second intervals at times when scanner noise was absent. Participants listened to auditory stimuli of sine waves (SW) (4-5.5kHz), English words (EW), and acoustically reversed English words (arEW) in a block design fashion. The arEW were employed to deliver the sound of a human voice with minimal linguistic components. Patients\u27 auditory hallucination severity was assessed by the auditory hallucination item of the Brief Psychiatric Rating Scale (BPRS). During perception of arEW when compared with perception of SW, bilateral activation of the globus pallidus correlated with severity of auditory hallucinations. EW when compared with arEW did not correlate with auditory hallucination severity. Our findings suggest that the sensitivity of the globus pallidus to the human voice is associated with the severity of auditory hallucination

    Brain Changes Induced by Electroconvulsive Therapy Are Broadly Distributed

    Get PDF
    © 2019 Society of Biological Psychiatry Background: Electroconvulsive therapy (ECT) is associated with volumetric enlargements of corticolimbic brain regions. However, the pattern of whole-brain structural alterations following ECT remains unresolved. Here, we examined the longitudinal effects of ECT on global and local variations in gray matter, white matter, and ventricle volumes in patients with major depressive disorder as well as predictors of ECT-related clinical response. Methods: Longitudinal magnetic resonance imaging and clinical data from the Global ECT-MRI Research Collaboration (GEMRIC) were used to investigate changes in white matter, gray matter, and ventricle volumes before and after ECT in 328 patients experiencing a major depressive episode. In addition, 95 nondepressed control subjects were scanned twice. We performed a mega-analysis of single subject data from 14 independent GEMRIC sites. Results: Volumetric increases occurred in 79 of 84 gray matter regions of interest. In total, the cortical volume increased by mean ± SD of 1.04 ± 1.03% (Cohen\u27s d = 1.01, p \u3c .001) and the subcortical gray matter volume increased by 1.47 ± 1.05% (d = 1.40, p \u3c .001) in patients. The subcortical gray matter increase was negatively associated with total ventricle volume (Spearman\u27s rank correlation ρ = −.44, p \u3c .001), while total white matter volume remained unchanged (d = −0.05, p = .41). The changes were modulated by number of ECTs and mode of electrode placements. However, the gray matter volumetric enlargements were not associated with clinical outcome. Conclusions: The findings suggest that ECT induces gray matter volumetric increases that are broadly distributed. However, gross volumetric increases of specific anatomically defined regions may not serve as feasible biomarkers of clinical response

    Abnormal Resting State fMRI Activity Predicts Processing Speed Deficits in First-Episode Psychosis

    Get PDF
    Little is known regarding the neuropsychological significance of resting state functional magnetic resonance imaging (rs-fMRI) activity early in the course of psychosis. Moreover, no studies have used different approaches for analysis of rs-fMRI activity and examined gray matter thickness in the same cohort. In this study, 41 patients experiencing a first-episode of psychosis (including N = 17 who were antipsychotic drug-naive at the time of scanning) and 41 individually age-and sex-matched healthy volunteers completed rs-fMRI and structural MRI exams and neuropsychological assessments. We computed correlation matrices for 266 regions-of-interest across the brain to assess global connectivity. In addition, independent component analysis (ICA) was used to assess group differences in the expression of rs-fMRI activity within 20 predefined publicly available templates. Patients demonstrated lower overall rs-fMRI global connectivity compared with healthy volunteers without associated group differences in gray matter thickness assessed within the same regions-of-interest used in this analysis. Similarly, ICA revealed worse rs-fMRI expression scores across all 20 networks in patients compared with healthy volunteers, with posthoc analyses revealing significant (

    Antipsychotic Treatment and Functional Connectivity of the Striatum in First-Episode Schizophrenia

    Get PDF
    IMPORTANCE Previous evidence has implicated corticostriatal abnormalities in the pathophysiology of psychosis. Although the striatum is the primary target of all efficacious antipsychotics, the relationship between its functional connectivity and symptomatic reduction remains unknown. OBJECTIVE To explore the longitudinal effect of treatment with second-generation antipsychotics on functional connectivity of the striatum during the resting state in patients experiencing a first episode of psychosis. DESIGN, SETTING, AND PARTICIPANTS This prospective controlled study took place at a clinical research center and included 24 patients with first-episode psychosis and 24 healthy participants matched for age, sex, education, and handedness. Medications were administered in a double-blind randomized manner. INTERVENTIONS Patients were scanned at baseline and after 12 weeks of treatment with either risperidone or aripiprazole. Their symptoms were evaluated with the Brief Psychiatric Rating Scale at baseline and follow-up. Healthy participants were scanned twice within a 12-week interval. MAIN OUTCOMES AND MEASURES Functional connectivity of striatal regions was examined via functional magnetic resonance imaging using a seed-based approach. Changes in functional connectivity of these seeds were compared with reductions in ratings of psychotic symptoms. RESULTS Patients had a median exposure of 1 day to antipsychotic medication prior to being scanned (mean [SD] = 4.5 [6.1]). Eleven patients were treated with aripiprazole and 13 patients were treated with risperidone. As psychosis improved, we observed an increase in functional connectivity between striatal seed regions and the anterior cingulate, dorsolateral prefrontal cortex, and limbic regions such as the hippocampus and anterior insula (P \u3c .05, corrected for multiple comparisons). Conversely, a negative relationship was observed between reduction in psychosis and functional connectivity of striatal regions with structures within the parietal lobe (P \u3c .05, corrected for multiple comparisons). CONCLUSIONS AND RELEVANCE Our results indicated that corticostriatal functional dysconnectivity in psychosis is a state-dependent phenomenon. Increased functional connectivity of the striatum with prefrontal and limbic regions may be a biomarker for improvement in symptoms associated with antipsychotic treatment

    Multimodal multi-center analysis of electroconvulsive therapy effects in depression: Brainwide gray matter increase without functional changes

    Get PDF
    Background: Electroconvulsive therapy (ECT) is an effective treatment for severe depression and induces gray matter (GM) increases in the brain. Small-scale studies suggest that ECT also leads to changes in brain functioning, but findings are inconsistent. In this study, we investigated the influence of ECT on changes in both brain structure and function and their relation to clinical improvement using multicenter neuroimaging data from the Global ECT-MRI Research Collaboration (GEMRIC). Methods: We analyzed T1-weighted structural magnetic resonance imaging (MRI) and functional resting-state MRI data of 88 individuals (49 male) with depressive episodes before and within one week after ECT. We performed voxel-based morphometry on the structural data and calculated fractional amplitudes of low-frequency fluctuations, regional homogeneity, degree centrality, functional connectomics, and hippocampus connectivity for the functional data in both unimodal and multimodal analyses. Longitudinal effects in the ECT group were compared to repeated measures of healthy controls (n = 27). Results: Wide-spread increases in GM volume were found in patients following ECT. In contrast, no changes in any of the functional measures were observed, and there were no significant differences in structural or functional changes between ECT responders and non-responders. Multimodal analysis revealed that volume increases in the striatum, supplementary motor area and fusiform gyrus were associated with local changes in brain function. Conclusion: These results confirm wide-spread increases in GM volume, but suggest that this is not accompanied by functional changes or associated with clinical response. Instead, focal changes in brain function appear related to individual differences in brain volume increases.publishedVersio

    Resting-State Connectivity Biomarkers of Cognitive Performance and Social Function in Individuals With Schizophrenia Spectrum Disorder and Healthy Control Subjects

    Full text link
    BACKGROUND: Deficits in neurocognition and social cognition are drivers of reduced functioning in schizophrenia spectrum disorders, with potentially shared neurobiological underpinnings. Many studies have sought to identify brain-based biomarkers of these clinical variables using a priori dichotomies (e.g., good vs. poor cognition, deficit vs. nondeficit syndrome). METHODS: We evaluated a fully data-driven approach to do the same by building and validating a brain connectivity-based biomarker of social cognitive and neurocognitive performance in a sample using resting-state and task-based functional magnetic resonance imaging (n = 74 healthy control participants, n = 114 persons with schizophrenia spectrum disorder, 188 total). We used canonical correlation analysis followed by clustering to identify a functional connectivity signature of normal and poor social cognitive and neurocognitive performance. RESULTS: Persons with poor social cognitive and neurocognitive performance were differentiated from those with normal performance by greater resting-state connectivity in the mirror neuron and mentalizing systems. We validated our findings by showing that poor performers also scored lower on functional outcome measures not included in the original analysis and by demonstrating neuroanatomical differences between the normal and poorly performing groups. We used a support vector machine classifier to demonstrate that functional connectivity alone is enough to distinguish normal and poorly performing participants, and we replicated our findings in an independent sample (n = 75). CONCLUSIONS: A brief functional magnetic resonance imaging scan may ultimately be useful in future studies aimed at characterizing long-term illness trajectories and treatments that target specific brain circuitry in those with impaired cognition and function

    The Global ECT-MRI Research Collaboration (GEMRIC): Establishing a multi-site investigation of the neural mechanisms underlying response to electroconvulsive therapy.

    Get PDF
    Major depression, currently the world's primary cause of disability, leads to profound personal suffering and increased risk of suicide. Unfortunately, the success of antidepressant treatment varies amongst individuals and can take weeks to months in those who respond. Electroconvulsive therapy (ECT), generally prescribed for the most severely depressed and when standard treatments fail, produces a more rapid response and remains the most effective intervention for severe depression. Exploring the neurobiological effects of ECT is thus an ideal approach to better understand the mechanisms of successful therapeutic response. Though several recent neuroimaging studies show structural and functional changes associated with ECT, not all brain changes associate with clinical outcome. Larger studies that can address individual differences in clinical and treatment parameters may better target biological factors relating to or predictive of ECT-related therapeutic response. We have thus formed the Global ECT-MRI Research Collaboration (GEMRIC) that aims to combine longitudinal neuroimaging as well as clinical, behavioral and other physiological data across multiple independent sites. Here, we summarize the ECT sample characteristics from currently participating sites, and the common data-repository and standardized image analysis pipeline developed for this initiative. This includes data harmonization across sites and MRI platforms, and a method for obtaining unbiased estimates of structural change based on longitudinal measurements with serial MRI scans. The optimized analysis pipeline, together with the large and heterogeneous combined GEMRIC dataset, will provide new opportunities to elucidate the mechanisms of ECT response and the factors mediating and predictive of clinical outcomes, which may ultimately lead to more effective personalized treatment approaches

    Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study

    Get PDF
    BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory measurements at diagnosis and do not incorporate time-varying biomarkers. Our goal was to develop a monoclonal gammopathy of undetermined significance and smouldering multiple myeloma stratification algorithm that utilised accessible, time-varying biomarkers to model risk of progression to multiple myeloma. METHODS: In this retrospective, multicohort study, we included patients who were 18 years or older with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma. We evaluated several modelling approaches for predicting disease progression to multiple myeloma using a training cohort (with patients at Dana-Farber Cancer Institute, Boston, MA, USA; annotated from Nov, 13, 2019, to April, 13, 2022). We created the PANGEA models, which used data on biomarkers (monoclonal protein concentration, free light chain ratio, age, creatinine concentration, and bone marrow plasma cell percentage) and haemoglobin trajectories from medical records to predict progression from precursor disease to multiple myeloma. The models were validated in two independent validation cohorts from National and Kapodistrian University of Athens (Athens, Greece; from Jan 26, 2020, to Feb 7, 2022; validation cohort 1), University College London (London, UK; from June 9, 2020, to April 10, 2022; validation cohort 1), and Registry of Monoclonal Gammopathies (Czech Republic, Czech Republic; Jan 5, 2004, to March 10, 2022; validation cohort 2). We compared the PANGEA models (with bone marrow [BM] data and without bone marrow [no BM] data) to current criteria (International Myeloma Working Group [IMWG] monoclonal gammopathy of undetermined significance and 20/2/20 smouldering multiple myeloma risk criteria). FINDINGS: We included 6441 patients, 4931 (77%) with monoclonal gammopathy of undetermined significance and 1510 (23%) with smouldering multiple myeloma. 3430 (53%) of 6441 participants were female. The PANGEA model (BM) improved prediction of progression from smouldering multiple myeloma to multiple myeloma compared with the 20/2/20 model, with a C-statistic increase from 0·533 (0·480-0·709) to 0·756 (0·629-0·785) at patient visit 1 to the clinic, 0·613 (0·504-0·704) to 0·720 (0·592-0·775) at visit 2, and 0·637 (0·386-0·841) to 0·756 (0·547-0·830) at visit three in validation cohort 1. The PANGEA model (no BM) improved prediction of smouldering multiple myeloma progression to multiple myeloma compared with the 20/2/20 model with a C-statistic increase from 0·534 (0·501-0·672) to 0·692 (0·614-0·736) at visit 1, 0·573 (0·518-0·647) to 0·693 (0·605-0·734) at visit 2, and 0·560 (0·497-0·645) to 0·692 (0·570-0·708) at visit 3 in validation cohort 1. The PANGEA models improved prediction of monoclonal gammopathy of undetermined significance progression to multiple myeloma compared with the IMWG rolling model at visit 1 in validation cohort 2, with C-statistics increases from 0·640 (0·518-0·718) to 0·729 (0·643-0·941) for the PANGEA model (BM) and 0·670 (0·523-0·729) to 0·879 (0·586-0·938) for the PANGEA model (no BM). INTERPRETATION: Use of the PANGEA models in clinical practice will allow patients with precursor disease to receive more accurate measures of their risk of progression to multiple myeloma, thus prompting for more appropriate treatment strategies. FUNDING: SU2C Dream Team and Cancer Research UK
    corecore